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Abstract

Occupational and recreational acoustic noise exposure is known to cause permanent hearing 

damage and reduced quality of life, which indicates the importance of noise controls including 

hearing protection devices (HPDs) in situations where high noise levels exist. While HPDs 

can provide adequate protection for many noise exposures, it is often a challenge to properly 

train HPD users and maintain compliance with us-age guidelines. HPD fit-testing systems are 

commercially available to ensure proper attenuation is achieved, but they often require specific 

facilities designed for hearing testing (e.g. a quiet room or an audiometric booth) or special 

equipment (e.g. modified HPDs designed specifically for fit testing). In this study, we explored 

using visual information from a photograph of an HPD inserted into the ear to estimate hearing 

protector attenuation. Our dataset consists of 960 unique photographs from four types of hearing 

protectors across 160 individuals. We achieved 73% classification accuracy in predicting if the fit 

was greater or less than the median measured attenuation (29 dB at 1 kHz) using a Deep Neural 

Network (DNN). Ultimately, the fit-test technique developed in this research could be used for 

training as well as for automated compliance monitoring in noisy environments to prevent hearing 

loss.

I. INTRODUCTION

Dangerous acoustic noise levels are encountered occupationally by 22 million workers 

annually (Tak et al., 2009). Occupational and recreational noise is known to cause 

permanent hearing damage and reduced quality of life, which indicates the importance 

of noise controls including hearing protection devices (HPDs). While HPDs can provide 

adequate protection for many noise exposures, training wearers and ensuring consistent 

compliance among them is often a challenge. In the military, hearing protection devices 

are often not worn due to the fact that auditory situational awareness (e.g. sound detection, 

sound localization and speech perception) may be reduced (Smalt et al., 2020). This in 

turn results in exposures that result in temporary and permanent audiometric shifts and 

also possibly additional non-measurable damage to the auditory system(Hecht et al., 2019; 

Yankaskas et al., 2017).
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One way to help maintain both auditory situational awareness and HPD compliance is to 

provide only as much attenuation that is needed for the given noise environment, as not 

to overprotect (Lee and Casali, 2017) and even cognitive performance (Smalt et al., 2020). 

Noise Reduction Ratings (NRRs) provide a way to assess the range of protection that 

different types of HPDs can provide through a single attenuation value in decibels (dB), and 

thus could be used to estimate the necessary amount of protection for a given environment. 

In the United States, manufacturers are required to label all HPDs with the NRR; however, 

because it is a laboratory-based test, the NRR is known to often overestimate the actual 

protection level provided in the field. Because of this overestimation bias, the NRR is often 

de-rated by 50% on a dB scale before calculating if a protected exposure is safe or not 

(Berger, 1996).

In addition to laboratory-based evaluations such as the NRR, it is also possible measure the 

attenuation of HPDs in the field for a given individual. This practice is often referred to 

as hearing protection fit testing, which may be accomplished by several methods. The first 

method is the Real-Ear Attenuation at Threshold (REAT), first demonstrated in the field by 

Michael et al. (1976). The REAT attenuation is calculated as the difference of the threshold 

of audibility measured with the hearing protector in place to the threshold obtained from the 

open ear. This process is then repeated across several frequencies to come up with a single 

personal attenuation rating (ANSI/ASA, 2018).

A second approach to hearing protector attenuation measurement is to use the Microphone 

in Real Ear (MIRE) technique. he MIRE technique takes the difference between sound 

pressure levels measured in the free-field (outside the ear) and those behind the hearing 

protector (Voix et al., 2006). The behind-the-hearing-protector measurement is accomplished 

by either placing the microphone in the ear canal before the earplug is inserted, embedding 

in the earplug in the protector, or by a tube that penetrates the earplug and connects to an 

external microphone. One advantage to the MIRE approach is that it is typically faster than a 

REAT-like test, since it requires no behavioral response. One negative aspect of the MIRE is 

that it can be difficult to position the microphone in the ear, or require a proprietary system.

The speed of hearing-protector fit testing has become more important recently because 

individual fit-testing is now being incorporated into hearing conservation programs to 

document how well hearing protection is being used, and potentially to reduce noise-induced 

hearing loss by increasing achieved attenuation (Hager et al., 2011; Schulz et al., 2011; 

Voix et al., 2020). In addition, portable hearing protection fit evaluation systems have been 

developed that are essentially over-the-ear headphones that fit over the HPD (Murphy et al., 
2016).

Several studies have investigated methods to assess the performance of earplugs in the 

work place (Biabani et al., 2017; Copelli et al., 2021; Voix and Hager, 2009) and in the 

military (Federman et al., 2020). These studies suggest that individual fit testing as part 

of training procedures may impact compliance and improve achieved attenuation. In our 

prior work, we administered a fit test with the NIOSH HPD Well-Fit™, and also tracked 

attenuation continuously throughout the day at a rifle training range (Davis et al., 2019) 
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using a custom in-ear noise monitoring device. We found that in-ear exposure levels that 

exceeded recommended limits were associated with poor HPD Fit.

In the present study, we explore the use of automatic inspection of the hearing-protector fit 

using photographs of the hearing protector fit in the ear to estimate the attenuation as an 

alternative to the existing methods. Our motivation to develop such a tool is two-fold. First, 

photograph-based fit estimation could provide automated feedback on hearing protection fit 

status almost instantly just before and even during exposure to noisy environments. Second, 

a photograph-based fit-check system can be deployed widely as a smartphone application, 

and used as part of training procedures with non-experts.

The system described in this paper relies on a form of machine learning referred to as deep 

neural networks or DNNs. DNNs have been broadly applied across many fields including 

automatic object detection (Szegedy et al., 2013) and recognition (Cichy et al., 2016), facial 

detection (Zhang and Zhang, 2014), and even medical image diagnosis (Lu et al., 2017). 

The sections that follow describe the data used to train the DNN for HPD fit-estimation, 

the architectures evaluated, and model performance. Finally, a smartphone implementation is 

presented as well as further discussion for practical use.

II. METHODS

A. Hearing Protector Fit Data

To develop an algorithm to predict hearing protection fit status based on a photograph, 

two components are necessary: a laboratory measurement of HPD attenuation, and a 

corresponding photograph of the fit. Our data source was derived from a HPD training study 

(Murphy et al., 2011) which characterized the effect of three different training instruction 

types (visual instruction, audio instruction, and expert fit). One hundred sixty participants 

total were enrolled in that study, and each was tested on one of four types of hearing 

protection (40 participants per HPD type). The fit study was done in a reverberant room for 

both ears simultaneously using the REAT method, per ANSI/ASA S12.6–2008 (ANSI/ASA, 

2008). The four hearing protectors used were the Moldex Pura-Fit® (Moldex, Culver City, 

CA), E-A-R™Classic™,(3M, Minneapolis, MN) foam earplugs, Howard Leight Fusion®, 

and AirSoft® (Sperian Protection, Smithfield, RI) flanged earplugs. The NRR for each HPD 

was 33dB, 29dB, 27dB, and 27 dB, respectively. The measured attenuation values at 1 kHz 

across all hearing protectors were approximately normally distributed with a mean of 29.3 

dB, and a standard deviation of 9.3 dB, and ranged from 0 to 53 dB.

Figure 1 shows photographs of both ears taken just before each attenuation measurement 

was conducted. Since three different fit training instruction methods were compared in 

this study for each subject, a total of 480 unique hearing protector fits were conducted, 

resulting in 960 images total when considering both ears. Each photograph was assigned 

a label: “good fit” or “poor fit” based on the median attenuation at 1 kHz, which was 

29 dB. A single frequency was used as a proxy for attenuation as to be compatible with 

planned future validation studies where only a single frequency will be measured due to time 

constraints. We compared this approach with averaging the attenuation across all frequencies 

and did not find any significant change in our results; see section IV B for a discussion of 
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the implications of this design choice on our results. Figure 1 contains randomly selected 

exemplars of these two classes, where a visual difference may be observable to the reader.

B. Human Visual HPD Classification

As a proof of concept for quantifying hearing protection fit through visual observation, two 

individuals (who did not participate in the fit testing described previously) were asked to 

rate photographs. This process was done not as a comprehensive behavioral study, but to 

establish whether there is indeed information present in the images themselves related to 

attenuation. For a pair of hearing protectors, each participant was asked to rate them as 

either “good fit” or “poor fit”. The participants viewed both left and right ear images at the 

same time, and were instructed to rate “poor” if the fit of either ear appeared to be poor. A 

binary rating was used to simplify the task as much as possible. The experimental protocol 

for behavioral assessment of the photographs was approved by the MIT Committee on the 

Use of Humans as Experimental Subjects and the US Army Medical Research and Materiel 

Command (USAMRMC) Human Research Protection Office. All research was conducted in 

accordance with the relevant guidelines and regulations for human subject testing required 

by these committees. All individuals gave written informed consent to participate in the 

protocol.

C. Deep Neural Network Classification

Our hearing protector fit estimator system design employed a binary classifier, meaning that 

it has a 0 or 1 output, corresponding to poor fit or good fit, respectively, given an input 

image. A single photograph of the hearing protector fit, with dimensions of 224 by 224 

pixels, was used as the input. Image preprocessing steps are provided in section II C 1.

To make classifications on an image, a deep neural network must first be trained using an 

iterative process, finding the optimal mapping between the input image and desired class 

label (“good fit”, “bad fit”) for the training data set. For a single training sample (i.e. single 

fit test), both the left and right ear images were passed through the DNN separately to obtain 

two output likelihood values (between 0–1). These scores were then averaged across the two 

ears before being compared against the true class label measured using REAT. We combined 

the two ears because the true attenuation value computed in the free field is measured 

simultaneously for both ears (i.e., a REAT test), rather than one ear at a time for the data 

used to develop our model (Murphy et al., 2011).

In this study, we compared three DNN models: two ResNet architectures and one simple 

convolutional architecture. All 3 networks begin with convolutional layers, which are often 

applied to image data due their ability to handle translations (Valueva et al., 2020) (i.e. 

invariant to the the location of the pixels in the image that contain the hearing protector, 

ear, etc.). Figure 2 summarizes the two DNN architectures of increasing computational 

complexity that were evaluated in this study: a simple convolutional network, and a ResNet 

model (Cheng et al., 2017). For a survey and tutorial of convolutional DNNs, including 

descriptions of rectified linear unit (ReLU), pooling, softmax, see (Sze et al., 2017). Each 

rectangular slice from left to right represents a single layer of the network, which has both 

an input and output. The size of each layer is indicated by the size of the rectangular slice, 
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with dimensions given just above (e.g. the input image 224 pixels by 224 pixels by 3 colors). 

We designed our simple convolutional network to have two convolutional layers, with the 

idea that the non-linearity might provide more learning capability than a linear filter, while 

being as simple as possible. The two convolutional layers also allow for efficient data 

reduction before the fully connected layers. The final stage of each network is the softmax 

function, which returns a 0–1 likelihood that the image has a good fit.

The ResNet model was chosen because it has shown to be successful in other image 

classification tasks such as the ImageNet Database (Akiba et al., 2017). Two different 

ResNet models (ResNet18, ResNet50) were downloaded and loaded through the Pytorch 

TorchVision library. The structure of the ResNet18 and ResNet50 both have 5 blocks 

of convolutional layers; they vary by the number of layers in each block (https://

pytorch.org/hub/pytorch_vision_resnet). In our preliminary development of the algorithm, 

we tried initializing the networks with pretrained weights (i.e. transfer learning) as well as 

randomly selected weights, and found no difference in performance on our validation set. 

We opted to show the results for the randomized weights.

1. Image Pre-processing—Several preprocessing stages were required in order to train 

and test our DNN classifier. The first stage was cropping the image around the ear, as shown 

in Figure 1, to 256×256 pixels. This process was done manually by one of the authors, and 

aimed to include the entire ear if possible. Based on Figure 1, it should be evident from the 

sample images that this process was intentionally done without precision, simulating what a 

novice user might do on a smartphone camera (see Figure 7).

Small transformations or random modifications were applied to the photographs help 

prevent overfitting or memorization of the training data by the network (Miko lajczyk 

and Grochowski, 2018). The transformations essentially add new, unique data to the 

training set, and were applied in the order shown in the table I. All of the transforms are 

commonly available in the Pytorch TorchVision Library. During the model testing phase, 

only normalization was applied, as well as a center crop (224 pixels from the center of the 

image) instead of a random crop. Three samples of the image output after the transforms are 

shown for two photographs in Figure 3.

D. Training Procedure

To train our classifiers, the image data were split up into train, validation, and test sets with 

the ratio 70%:15%:15% respectively, for a total of 336 unique items in the train set. For 

cross-validation, we repeated this data splitting process 12 times (folds) using the function 

GroupShuffleSplit from Python’s Scikit-learn. Individual subjects were grouped together, 

so that no individual subject’s data were shared across training and testing. This means 

that when testing our network, we were testing against novel photographs and novel ears 

and consequently were evaluating performance on never before seen people. One training 

and evaluation of one of the 12 folds took approximately two minutes to complete. We 

used the Adam optimizer, a batch size of 32, a learning rate of 0.001, weight decay of 

0.001 (see https://pytorch.org/docs/stable/generated/torch.optim.Adam.html for details), and 

selected the model that achieved the best accuracy on the validation set.
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E. Software and Hardware Stack

Software development was done using Python 3.6.9, PyTorch 1.3.0, Torchvision 0.4.2, and 

Scikit-learn 0.20.3. Data were processed on a Nvidia Volta V100 GPU on the MIT Lincoln 

Laboratory Supercomputing Center (Reuther et al., 2018).

III. RESULTS

A. Human Classification of Hearing Protection Fit Images

Table II shows a breakdown of classification accuracy across hearing protectors in the 

human evaluation of fit. Both human rater participants were able to rate hearing protector fit 

photographs as being “good” or “poor” (greater or less than 29 dB attenuation at 1 kHz) at 

a rate above chance averaged across all HPDs. Participant one achieved 68% and participant 

two achieved 58% overall across the four hearing protector types. Performance across the 

hearing protectors varied, and both participants reported that the foam hearing protectors 

seemed easier to classify.

Characterizing only the accuracy of ratings can be misleading however, because it 

assumes the participant is able to infer the arbitrary cut-off point of 29 dB just through 

visual inspection. An alternative analysis was performed using the Receiver Operating 

Characteristic (ROC) curve as follows. The score from the human rater is a binary outcome 

variable and the true attenuation is a continuous variable. If we binarize the truth data 

(attenuation) at various thresholds, we can see the performance of the human at that 

threshold, rather than picking a fixed cut-off. Looking at the extreme cases, if we binarize 

the fit data at 0 dB attenuation, then all the true labels are “good fit”, and the person will 

then register some labels as good and some bad (approximately half). Consequently we 

compute a sensitivity score of 50%, and a false alarm of 0% (since all protectors are good, 

we cannot have false positives). The opposite is true if we binarize at a high attenuation, e.g., 

50 dB. The ROC curve allows us to find the point at which the human raters are intuitively 

tracking at the threshold between good fit and poor fit. This threshold is the point at which 

the ROC curve is farthest to the upper left. In general, the total Area Under the Curve (AUC) 

is a proxy for how much informative detail exists in the images for performing classification.

Figure 4 shows the ROC curves for the two participants. They achieved an overall AUC 

of 0.72 and 0.60 respectively, where the maximum possible AUC is 1. The human rater 

most experienced at working with hearing protection achieved good classification across 

all hearing protectors, while the second human rater achieved good performance on all 

but the Fusion HPD. These results suggest that there is useful information in the images 

hearing protector that can be leveraged in an automated system through machine learning. A 

summary of the AUC as a function of hearing protector is shown in Table III.

B. Neural Network Classifier

Figure 5 shows the ROC curves produced on the held-out validation sets for each of 

the three DNN architectures. These ROC curves represent an average across all hearing 

protectors, as well as across the 12 cross-validation training folds. The ResNet18 model 

produced the highest AUC of 0.75, slightly higher than the ResNet50 (AUC=0.73), and 
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Simple Convnet (AUC = 0.74). A repeated-measures ANOVA with main effects of Fold and 

Model Type, revealed no significant difference between the AUCs of the 3 model types (F = 

0.6, p = 0.55).

Figure 6 shows ROC curves for each hearing protector individually using the ResNet18 

model since it was the highest performing overall. A repeated-measures ANOVA found a 

significant difference between hearing protectors (F = 5.9, p = 0.0001). Tukey post-hoc 

comparisons revealed that the Purafit HPD was significantly better than the Fusion HPD (p < 

0.04). The mean and standard deviation of the AUCs for all 3 models are shown in Table III.

IV. DISCUSSION

Overall, our results show promise for image-based fit classification of HPD attenuation. 

Surprisingly, we found little difference in the performance between the three DNN 

classification models compared in this study. A major factor in the lack of varying model 

performance is likely due to the database size, and how quickly the models can overfit on 

the training data (see IV B). It was also unexpected that there was little benefit to using 

a pre-trained network (transfer learning). The following sections discuss the applications, 

considerations, and future work for this system.

A. Hearing Conservation and Safety Applications

One obvious application of this photograph-based fit system is to perform a quick check 

of hearing protection fit just before noise exposure, or at the start of the work day for 

those enrolled in hearing conservation programs. While portable audiometric-based fit check 

systems could serve this purpose, we see an image based classifier as complementary 

because of its speed, taking only a few seconds to employ, and could be completely 

automated.

An example application might be at a gun-range where noise exposure risk is quite high. 

An automated system could detect in-real time if individuals are in compliance with safety 

regulations at the range. This could also apply to industrial environments.

A second application of our system is as a training tool. Several studies have indicated 

that hearing protection training is critical to achieving good attenuation. We propose that a 

smartphone app that uses our system could provide feedback to the user when the user is 

establishing a good fit.

One potential concern over using visual inspection for fit testing is the potential for false 

positives, or cases when the fit looks good, but it is really not. A related problem is that 

individual variability in ear-canal shape and size would likely impact the ability of our 

algorithm accuracy. Our system is not intended to replace other fit check systems, but 

rather supplement them and find obvious cases. For that reason, we did not attempt to do 

regression, predicting the actual dB attenuation value. Instead we limited ourselves to binary 

classification. To overcome the potential ear-canal size variability, future studies might 

include on-occluded baseline images for each subject that include a fixed size reference (e.g. 

a ruler).
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Using the ROC curve, the operating point of the system can be set to reduce the impact of 

false positives. For example, in Figure 6, if we set the system at a false positive rate of 0, 

the system still has 60% accuracy for the Purafit HPD. Slightly less conservative operating 

points may be taken in the future as overall system performance is likely to improve with 

additional data.

B. Model Generalization

The number of images and hearing protectors used in this study is quite low as compared 

to some neural network studies that use millions of images. A challenge across all machine 

learning approaches is generalization of the model to new datasets and conditions. In this 

case, all the photographs were taken in a single laboratory, with specific lighting conditions, 

and on the same camera. The image augmentation transformations applied to the images as 

shown in Figure 3 will likely help with this issue, but further data are needed under other 

conditions to truly assess generalization.

A second generalization goal is for the system to work on other hearing protectors, and 

potentially even ones that it has not been trained on. Anecdotal testing by the authors has 

shown some potential promise at predicting other styles of insert HPDs, but further formal 

evaluation is required.

One potential issue with our fit predictions is that we did not use the personal attenuation 

rating (PAR) as the label for each hearing protector image. We opted to use a single 

frequency instead of averaging across multiple frequencies that is typically done in hearing 

protection fit-testing. We did compare our results using a single frequency with the average 

across all frequencies and did not find a significant change in the classifier performance.

There are several features that could be added in the future to improve the robustness and 

usefulness of the system. A first feature is the ability to detect if a hearing protector is in 

the image at all, or if the picture even contains an ear. This would help reduce or filter out 

images in an online system that are not relevant, and could also be helpful in processing 

video data (for real-time compliance monitoring applications). A second feature could be to 

detect if no hearing protector is present in the image, and just the open ear is present. This 

could be an extremely useful feature in a surveillance mode (for example at a gun range, 

where hearing protection is generally required). Finally, it could be beneficial to detect 

which hearing protector is being used, or if it is an unknown hearing protector, to warn the 

user that the estimate may be less accurate.

Fortunately, adding new hearing protectors to the database should be relatively simple, 

especially with use of portable audiometric fit check systems. For future studies, training 

on single ear data, rather than the free field two ear fit data used in this study, is likely 

to improve the quality of the training data, and is another way performance could be 

improved. Other variations also might prove to increase model performance, including 

reference photographs of the either the HPD, the individuals unoccluded ear, or both.
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C. Smartphone Implementation

We exported our trained ResNet18 model and developed an Android app that can take a 

photograph and run that model. A crop tool automatically opens up after the image is taken 

for the user to select a square region (which is required for the model input). A screenshot 

of the current smartphone application is shown in Figure 7, where a good and bad fit are 

shown. This may allow the model to calibrate for the relative size of the ear and HPD, and 

even account for individual subject variation in the ear canal itself (Benacchio et al., 2016).

V. CONCLUSIONS

In this study, we evaluated the feasibility of estimating hearing protection fit visually, and 

developed an automatic binary image classifier using a deep neural network. We achieved 

73% classification accuracy overall with our selected model, the ResNet18, for determining 

if the fit was greater or less than the median measured attenuation (29 dB at 1 kHz). 

Ultimately, this algorithm could be used as part of a smartphone app for training as well as 

for automated compliance monitoring in noisy environments for preventing hearing loss.
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FIG. 1. 
Photographs of four types hearing protection devices. The left two columns show examples 

of fits labeled as “bad” (<29 dB attenuation), while the right two columns show fits labeled 

as “good” (>29 dB attenuation)
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FIG. 2. 
Two neural network architectures for classifying hearing protector fit based on an input 

image. 1. A simple convolutional neural network. 2. The ResNet architecture (shown is the 

ResNet18). Input is color image, and last FC layer is set to have 2 outputs: Good fit > 29dB, 

Poor Fit < 29dB attenuation. Each layer is labeled with the dimensionality of its input (e.g. 

the input image is of size 224 pixels by 224 pixels by 3 for RGB).
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FIG. 3. 
Three examples of PyTorch torchvision transformations for two sample photographs, using 

the parameter set from table I. The result is a slight variation in translation, rotation, 

brightness, and color. More easily identifiable is a horizontally flipping in Transform 3 as 

compared to Transform 1 and 2.
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FIG. 4. 
ROC curves for human binary classification of hearing protector fit (good, poor) given the 

attenuation of that hearing protector. Each panel shows the ROC curve for one subject across 

hearing protectors, across a total of 480 pairs of photographs. Human rater 1 (P1, left) 

performed well on all hearing protectors, while human rater 2 (P2, right) performed worse 

with the Fusion HPD.
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FIG. 5. 
Receiver operating characteristic curve for the three Neural Network architectures. The 

ResNet18 network performed best overall with AUC=0.75.
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FIG. 6. 
Receiver operating characteristic curve for the ResNet18 Network architecture, as a function 

of each hearing protector.
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FIG. 7. 
The smartphone application showing an example of a good fit correctly classified as a good 

fit and poor fit correctly classified as a bad fit.
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TABLE I.

Table of PyTorch torchvision transforms applied in this order to the input image dataset during training. For 

further information see https://pytorch.org/docs/1.3.0/torchvision/transforms.html

Torchvision Transform Parameters

RandomRotation degrees=10 (Uniformly chosen in range [−10 10])

ColorJitter brightness=0.05, contrast=0.05, saturation=0.01, hue=0.01

RandomResizedCrop size=224, scale=(0.6, 1.0), ratio=(0.75, 1.33), interpolation=2

RandomAffine angle=5, translate=None, scale=None, shear=5

RandomHorizontalFlip none

Normalize mean =[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
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TABLE II.

Accuracy (Fraction Correct) for each of the three classifiers and two human participants (P1 and P2). Mean 

values are shown across training folds for DNN results, while standard deviations are in parenthesis.

Classic Purafit Fusion Airsoft All

ConvNet 0.77 (0.10) 0.74 (0.12) 0.66 (0.14) 0.72 (0.11) 0.73 (0.05)

ResNet18 0.72 (0.12) 0.80 (0.12) 0.65 (0.12) 0.73 (0.12) 0.73 (0.04)

ResNet50 0.69 (0.14) 0.79 (0.13) 0.64 (0.13) 0.73 (0.13) 0.71 (0.06)

P1 0.57 0.78 0.68 0.70 0.68

P2 0.64 0.70 0.49 0.49 0.58
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TABLE III.

Table of ROC Area under the Curve (AUC) for each of the three classifiers and the two human raters (P1 

and P2). Mean values are shown across training folds for DNN results, while standard deviations are in 

parenthesis.

Classic Purafit Fusion Airsoft All

ConvNet 0.76 (0.14) 0.70 (0.18) 0.67 (0.16) 0.69 (0.19) 0.74 (0.06)

ResNet18 0.69 (0.19) 0.81 (0.16) 0.67 (0.16) 0.69 (0.19) 0.75 (0.07)

ResNet50 0.62 (0.24) 0.74 (0.18) 0.65 (0.22) 0.70 (0.14) 0.73 (0.08)

P1 0.80 0.78 0.70 0.70 0.72

P2 0.76 0.75 0.52 0.71 0.60
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